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Abstract
We present some recent theory and simulation results addressing the phenomena
of colloidal gelation at both high and low volume fractions, in the presence of
short-range attractive interactions. We discuss the ability of mode-coupling
theory and its adaptations to address situations with strong heterogeneity in
density and/or dynamics. We include a discussion of the effect of attractions
on the shear-thinning and yield behaviour under flow.

1. Introduction

Recent studies of mode-coupling theory (MCT) have predicted various kinetic arrest scenarios
for colloids with short-range attractions [1–3]. The behaviour at the arrest transition has
been analysed in considerable detail as a function of the volume fraction φ of the colloids,
their attraction range δ (in units of the particle radius a) and the attraction ε (in units of
kBT ) [4, 5]. This approach, which builds on a successful theory of the glass transition for hard
spheres, suggests that the underlying ‘ideal glass transition’, found within MCT, could provide
a universal mechanism for homogeneous gelation in which the arrested state is viewed as an
attraction-driven glass [6, 7].

Here we do not attempt to mediate between those who support and those who oppose the
basic philosophy of MCT (see [8, 9] for discussions). Instead, in sections 2–4, we outline three
areas of recent work that examine the ability of MCT to deal with heterogeneous systems.
In section 2 we consider attractive colloids at low density, and consider kinetic arrest by
routes that combine aspects of irreversible aggregation, gelation, and phase separation. The
phenomenology that we describe takes MCT as a reliable theory of arrest at high densities
only, and attempts to extend the same picture to the much lower colloid volume fractions at
which gelation actually occurs in systems with strong short-range attractions. The resulting
gels are very heterogeneous and our approach is to preserve what we can of the MCT theory
while allowing for heterogeneity in density at scales either shorter or longer than those at which
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we apply the MCT. In the first case (shorter-scale heterogeneity) one has a picture involving
the MCT-like arrest of clusters; in the second (longer-scale) one has a phase-separation driven
morphology in which one phase arrests into a dense gel or attractive glass.

In section 3 we turn to gelation at higher particle densities, where unmodified MCT can
reasonably hope to succeed, at least in the absence of phase separation. Here we carefully
analyse simulation data for attractive colloids, suppressing phase separation by including
a weak, long-range repulsion. We find that MCT gives an excellent account of averaged
dynamical quantities but that this disguises an underlying dynamics which is much richer,
and which in fact shows many hallmarks of dynamical heterogeneity (DH): populations of
fast- and slow-moving particles coexist. This heterogeneity appears to be closely related to
static heterogeneity of density which is present for attractive colloids even at quite high volume
fractions. This form of DH may thus be different from that found in hard spheres [10] where
the density fluctuations are smaller. The new type of DH may be enhanced by the long-range
repulsion we have added, but even if that turns out to be true, the results are of strong interest.
They show firstly that when experimental data agree with MCT this does not exclude the
possibility of DH, likewise that observation of DH does not exclude the possibility that MCT
remains predictive for averaged quantities such as the dynamic structure factor on the fluid
side of the transition.

In section 4 we describe some related recent work on colloids under shear, and give a
preliminary account of calculations that address the effect of short-range attractions on the
rheological behaviour. This offers nontrivial predictions, in particular for the variation of yield
stress and shear thinning behaviour with the range of attraction δ. In section 5 we offer some
concluding remarks.

2. Gelation at low density

2.1. MCT, phase separation, and aggregation

For attractive colloids, MCT appears to be very useful at predicting averaged dynamical
quantities like the dynamic structure factor S(q, t), so long as the volume fraction φ of colloid
is high enough [7, 11, 12]. In the following we refer to the resulting spatially homogenous gel
as type I. In practice, for moderately short relative range of attraction δ � 10−2 a metastable
gas–liquid phase separation [13] interferes with this kinetic arrest scenario. On quenching to
create a gel, phase separation is likely to intervene for all colloid volume fractions below the
intersection of the binodal with the MCT arrest line.

The ‘hidden’ binodal, when present, dominates over the much slower crystallization route
to the thermodynamic ground state, so that it is liquid–gas separation not crystallization that
can interfere more strongly with glass formation. Moreover, due to the kinetic (as opposed to
thermodynamic)mechanism underlying the arrest transition, this potentially complex interplay
sensitively depends on the quench rate relative to the typical timescale for phase separation.
To a first approximation, the latter is given by the Smoluchowski time, which is the timescale
for doublets to form by colloidal collisions. Depending on whether the quench is fast or slow
with respect to this natural timescale, we expect transient gels to develop along one of two
different routes, in the following referred to as type II and type III, respectively. Type-II gels are
homogeneous on short scales but strongly heterogeneous at the mesoscale: they result when
the characteristic coarsening textures produced by phase separation get ‘frozen in’ during the
coarsening process, as a result of an MCT-like arrest of one of the two phases [14]. Type-III gels
are, in contrast, assemblies of long-lived nonequilibrium structures locally resembling those
obtained from irreversible cluster aggregation [15] and thus heterogeneous also on short scales.
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Figure 1. Schematic (φ–ε) cut through the phase diagram of adhesive hard spheres. The interaction
of gas–liquid phase separation with MCT kinetic arrest gives rise to a variety of metastable gel
phases. At high colloid volume fractions φ, where MCT can be applied directly, homogeneous
gels form (region I). At lower φ phase separation may create macroscopically heterogeneous gels
(region II) and (homogeneous) gel beads if the quench is slow, while more tenuous gels (III) and
(ramified) clusters consisting of nonequilibrium particle aggregates result from rapid quenches.

(This figure is in colour only in the electronic version)

To distinguish from fully irreversible aggregates, in which the bonds formed are permanent,
the type III process is sometimes called ‘weak gelation’.

During the process leading to type-II gels, the system remains in (or sufficiently close
to) local equilibrium, so that gelation by this route represents a relatively straightforward
combination of phase separation and MCT. However, additional concepts are needed for
the type-III scenario. Some of us have recently proposed a schematic description (called
cluster-MCT or CMCT) [16] for weak gelation in such suspensions, in terms of an effective
theory for a fluid of ‘renormalized particles’. These represent coarse-grained clusters and their
interactions are analysed, in an MCT-like fashion, to predict the onset of global kinetic arrest.
The underlying view of gelation as a double ergodicity breaking (on the monomer scale and
on the cluster scale) seems to be supported by recent numerical simulations [17].

2.2. Schematic nonequilibrium phase diagram

A schematic phase diagram of the different nonequilibrium behaviours predicted for hard-
sphere colloids with short-range attractions is provided in figure 1.

Slow quench scenario. We concentrate first on this conceptually simple case, which results
in type-II gels. Consider a slow quench along the quench path indicated by the arrow at
volume fraction φa. Upon crossing the (metastable) liquid–gas binodal, the fluid starts to
decompose into a minority phase consisting of colloidal ‘liquid’ domains (rich in particles),
and a majority ‘gas’ phase consisting of domains where colloids are scarce. These domains
undergo slow coarsening, while their compositions continue to evolve along the binodal in
response to the ongoing quench. During this process, the two phases both remain in local
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coexistence on the binodal and move apart until the compositions ϕ1 and ϕ2 are reached. Note
that, although the quench is slow, we assume that macroscopic phase separation is even slower,
so that the morphology is one of mesoscopic domains. Once the colloid volume fraction within
the minority phase reaches ϕ2 (see figure 1), which is where the binodal cuts the MCT line,
the denser domains undergo kinetic arrest: the characteristic timescales for further structural
evolution suddenly increase dramatically. From the lever rule, the volume fraction of space
occupied by the resulting amorphous solid phase is �(φ) = (φ − ϕ1)/(ϕ2 − ϕ1).

Depending on the mesoscale domain structure that has accompanied the preceding phase
separation, this volume fraction � may be more or less than the value �c required for the
minority phase to percolate. Only if it does percolate do we have a macroscopic solid or gel:
note that gelation, in the sense of a finite elastic modulus, requires percolation of an arrested
phase, or equivalently arrest of a percolated one. In particular, existence in the system of a
percolating network of bonds, each of which is transient, is not sufficient to create a modulus.

In terms of the colloid volume fraction φ, we obtain a percolation threshold φc defined by
�(φc) = �c. For a volume fractionφb > φc as depicted in the figure, a connected gel, of finite
modulus, is the predicted result of a quench. By varying the colloid volume fraction and the
quench kinetics, different gel morphologies should be realizable in a relatively well controlled
manner. Indeed, corresponding recipes are routinely applied in the industrial processing of
colloidal and polymeric gels for optimizing rheological properties (see e.g. [18, 19]). Upon
decreasing φ, the gel gets more tenuous and eventually, for φ < φc (e.g., φ = φa in figure 1),
this disintegrates into a fluid of slightly sticky gel beads. (At still lower densities, there is a
slight shift in the binodal curve because the coexisting dense phase cannot be denser than φ2.)

For moderately deep quenches, the mutual attraction between the colloids, though strong
enough to solidify dense colloidal drops (forming the aforementioned beads), is insufficient
to permanently bind beads that come into contact. This is because the beads are now made
of colloidal glass, and cannot adapt their shapes to allow coalescence on the Smoluchowski
timescale, even though this would reduce their surface energy significantly. Two such beads
of radius R, treated as effective particles, have a far smaller relative range of attraction than the
primary particles (δeff ∼ δ/R), which for roughened surfaces may be only partly outweighed
by its increased depth εeff .5 For deeper quenches, the residual interaction between beads may
become strong enough to cause a second round of phase separation and/or gelation at the bead
level; the whole argument can be iterated to describe that case.

Ignoring this last effect for the moment, the gel region in the phase diagram is bounded by
a section of liquid–gas tieline emanating from the intersection point (at ϕ2) of the binodal with
the MCT arrest line, and a line parallel to the quench route, emanating from this tieline at the
volume fractionφ = φc ≡ ϕ1+�c(ϕ2−ϕ1) corresponding to percolation. The transition across
the first boundary is ‘temperature driven’ (or more accurately ε driven) and governed by the
MCT arrest of the dense phase; quenching by this route, some features of the MCT transition
(which applies directly only for φ � ϕ2) are expected to be detectable dynamically at much
lower concentrations [16]. In contrast, the ‘pressure-driven’ (or more accurately, φ-driven)
transition across the remaining section of the gel boundary should fall into the percolation
universality class [20]. The possible secondary gelation of arrested beads at deep quenches
complicates this picture somewhat; we have neglected it in the figure and do not pursue this here.

Rapid quench scenario. Rapid quenches are ones in which the system finds itself under
conditions of strong, quasi-irreversible aggregation, so that bonds created in collisions between

5 Note that for ideal spheres εeff would typically increase linearly with size and thus over-compensate the effect of
the reduction in the effective range δeff . However, the bead surfaces are expected to be roughened due to particle
deposition in the ongoing quench, so that estimating the effective attraction is a subtle task left for future work.
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particles are very long lived. In this case one expects at low volume fractions a nontrivial
episode of structure formation,akin to irreversible diffusion-limited aggregation,on a timescale
fast compared to other processes. Morphologically, rapid quenches should differ from the slow
quenches described above, with a more ramified local structure and a correspondingly larger
region in which an arrested phase percolates; the gel phase thus extends to lower volume
fractions than in a slow quench.

The resulting type-III gels are conceptually distinct from the rest, and may have some
intriguing properties. Their analysis is more difficult, as can be appreciated by considering a
deep rapid quench at low volume fractions. This is the case considered in the CMCT theory
of [16]. The basic idea of CMCT is to allow for strong, quasi-irreversible bonding at short length
scales by applying MCT, not to primary particles, but to fractal aggregates created by such
bonding. This is quite similar to the idea already introduced above,of iterating MCT to describe
the possible gelation and arrest of dense beads. However, the calculation of the effective
particle parameters is even more subtle and, in particular, allows for an entropic decrease in
the effective attraction between clusters. This reflects the multiplicity of internal bonds at which
two clusters, having joined to form a larger one, can now be broken apart to recover two clusters
of similar size and shape to the original pair [16]. Another potentially important feature is the
ability of CMCT to allow for a build-up of long-range repulsions due, for example, to a very
slight Coulomb repulsion that may be present in many colloids, even in organic solvents [21].
This build-up also lowers the effective attraction strength as the clusters get larger.

The effect of the scale-dependent effective bond strength, combined with a scale-dependent
range, means that in CMCT there is a tendency, as aggregation proceeds, to move away from
the attraction-driven arrest scenario and towards a more conventional repulsion-driven glass.
Setting aside phase separation effects (for now), the key issue in gelation is then whether the
effective attractions become small while the volume fraction of clusters is still fairly low, or
whether, by the time they stop aggregating, the clusters are dense enough to be arrested anyway
by repulsive caging. In the first case one predicts a semi-ergodic phase comprising a fluid of
clusters [22], in the second an arrested cluster phase which is nonergodic at all scales and thus
a gel [16].

For type-III gels the interplay with phase separation is quite complicated; roughly speaking
it follows the lines already developed above for slow quenches, but with CMCT-like arrest re-
placing the standard MCT arrest throughout the discussion. However the phase separation itself
is also perturbed by what is happening at the cluster scale, which is a further complication. (In
mitigation, for many systems the dense phase will be dense enough for the CMCT and MCT pre-
dictions to nearly coincide through much of the phase diagram anyway.) Within the CMCT pic-
ture there can be two distinct forms of cluster phase: one in which there is no tendency to macro-
scopic phase separation but clusters stop growing due to the build-up of repulsion (Coulombic
or entropic); another in which phases have separated but the dense arrested phase does not
percolate [16]. The latter includes the gel beads described previously as a limiting case [14].

CMCT is based on a simplifying assumption that the timescale for internal reconstruction
of clusters is slow compared to the timescale for realizing a state of repulsion-driven arrest
at larger scales. This may be safe for Coulombic stabilization, but needs careful further test,
against both experiment and simulation, in the case where the bond strength is effectively
reduced by the entropy associated with bond breaking internal to a cluster [23].

2.3. Combining MCT with phase separation: further remarks

By translating knowledge of the interaction potential into a combined topographic map of the
MCT transition surface and the gas–liquid coexistence, we were able to present above and
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Figure 2. Static structure factor Sq for the AHSS [24] with volume fraction φ = 0.3 and
adhesiveness parameter τ = 0.08 and 0.2, respectively (the former being closer to the spinodal and
showing the more pronounced oscillations), calculated by a random phase approximation. Three
cases of competing interactions are distinguished: the bare AHSS (dashed curves), the AHSS with
an additional repulsive Yukawa barrier of height 0.1 and decay length 2.5 (solid curves), and with
an attractive tail of the same range but with an amplitude −0.004 (dotted curve, only for τ = 0.2
since τ = 0.08 lies within the spinodal region).

in [16] (see also [14]) a guide for disentangling some of the experimentally observed complex
phenomenology of attracting colloids.

We now take a somewhat broader perspective in which, on top of the hard-sphere
repulsions, the pair potential can be represented as the sum of a strong short-range attraction and
an additional weak long-range interaction that may either be attractive or repulsive. Numerous
examples—from microemulsions, through block copolymers, to supercooled water—show
that such competing interactions can give rise to complex phase behaviour. Even the adhesive
hard-sphere system (AHSS) of Baxter [24] is now known to have two competing crystalline
phases, two glasses, and a nontrivial re-entry between them. This stems from a competition
between the hard-core repulsion and the short-range attraction [6, 25]. Adding further long-
range interactions can certainly complicate this further.

Insofar as it destabilizes the equilibrium liquid, the origin of this complexity is manifest
in the static structure factor Sq [26]; this is also the input for MCT calculations. In figure 2, Sq

is shown for an AHSS with additional long-range interaction. The low-q tail of the structure
factor shows the characteristic upturn found near any spinodal. A sharper upturn is seen (well
before the spinodal is reached) if a very weak but longer-ranged attraction is added (dotted).
In contrast, adding a repulsive barrier can energetically prohibit macroscopic phase separation
as evidenced by the suppression of the spinodal divergence and the shifting of the new relative
maximum in Sq to finite wavevectors q = qc (solid curves). Near the former spinodal, the
new peak grows in height without bound, thus heralding microphase separation, in which the
homogeneous fluid decomposes into finite, self-limiting domains of liquid-like and gaslike
character. The domain size (�q−1

c ) is controlled by (and roughly scales as) the range of the
extra repulsion.

To predict the nonequilibrium behaviour in the presence of the competing interactions,
note first that thermodynamics and kinetic arrest are sensitive to different features of the pair
potential. Gas–liquid phase separation can be induced by a weak long-ranged attraction,
as familiar from van der Waals’ theory; and similarly, even finite repulsions may cause
(Wigner) crystallization if sufficiently long ranged. Attraction-driven arrest, on the other hand,
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relies on kinetic trapping of a thermodynamically stable fluid by short-ranged forces (δ � 1),
and according to MCT the arrest is triggered by the high Fourier modes qa � δ−1 � 1, as
encoded in the direct correlation function cq ∝ 1 − S−1

q [1]. This contrasts with the crowding
of the nearest-neighbour shell visible in the first peak of Sq near qa � π , which leads to the
‘cage effect’ for repulsive hard-sphere glasses.

Recently there has been much debate whether the long-range repulsion itself [27], or the
frustration resulting from the competing interactions [28], may be a new driving mechanism for
the formation of more exotic arrested states. Indeed, apart from the repulsive (and attractive)
hard-core glasses familiar in colloids, MCT allows for another transition scenario triggered by
long-range repulsions that give rise to a dilute arrested state, which was interpreted as a Wigner
glass [29]. Even liquid-crystalline domains of asymmetric particles have been predicted
to undergo kinetic arrest [30]. Along somewhat different routes similar conclusions were
reached about so-called stripe glasses in microemulsions and related systems [28]. Several of
the mentioned mechanisms (attractive/repulsive ‘hard-core’ interactions of arrested spinodal
textures; a glass transition triggered by a microphase peak in Sq ; the Wigner glass) may
be relevant to the possible gel phases of Coulomb-stabilized cluster fluids [21, 22]. More
generally we therefore expect that the interplay of MCT with microphase separation could
lead to a phenomenology at least as rich and interesting as the one elaborated above for the
case of bulk phase separation.

3. Simulation of dense attractive colloids

We now turn to our second theme, which is to test the predictions of MCT for dense attractive
colloids, in a regime of concentration and interactions where these predictions could be
reasonably expected to work. Thus we can bypass the various complications connected with
phase separation and aggregation that arise at low density, as were considered in section 2.

3.1. Simulation details

Newtonian dynamics simulations were performed to test the theoretical predictions on the gel
transition in a system whose pair potential mimics the depletion attraction found in colloid–
polymer mixtures [6]. One thousand polydisperse particles were considered in the canonical
ensemble. The core–core repulsion between particles is given by Vsc(r) = kBT (r/a12)

−36,
where a12 = a1 + a2, with a1 and a2 the radii of the particles. A flat distribution of radii
was used to prevent crystallization, with a (half-)width equal to one-tenth of the mean radius,
� = 0.1a. The interaction between the colloidal spheres is given by the Asakura–Oosawa
interaction potential, which considers the depletion of ideal polymers [31], corrected to take
into account the polydispersity of the colloids [32]. The total potential (Vtot = VAO + Vsc) was
corrected close to a12 to ensure that the minimum of the total potential is at a12 [33].

A long-range repulsive barrier was added to the interaction potential in order to prevent
liquid–gas separation at high attraction strength. When this barrier is allowed for, the potential
is attractive at short distances, and slightly repulsive at longer distances. The range of the
attraction is given by the size of the polymers, ξ , and the strength at contact, r = a12,
is proportional to the polymer volume fraction φp. The height of the repulsive barrier is
1kBT , whereas arrest occurs for attraction strengths above ∼7kBT [33]. While the remarks
of section 2.3 serve as a warning that this kind of barrier could influence the results, our aim
here is merely to avoid the liquid–gas separation that would otherwise complicate matters
considerably. The barrier is thus chosen as small as is consistent with achieving this.

In our simulations, lengths are measured in units of the mean particle radius, a, and time in
units of

√
4a2/3v2, with v the thermal velocity, which is set to

√
4/3. The equations of motion
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Figure 3. Long-time limit of the demixing order parameter, ψ4, as a function of the polymer
volume fraction, φp. Inset: evolution of ψ4 with time for different φp as labelled.

were integrated using the velocity-Verlet algorithm, with a time step of 0.0025. The volume
fraction of colloids is fixed at φ = 0.40; ξ = 0.1a; and the attraction strength is parametrized
by the polymer volume fraction, φp.

3.2. Suppression of phase separation

Separation of the system into two phases of different density was monitored by a demixing order
parameter,ψ4. The system is divided in 43 boxes of equal size, and the deviation of the density
in every box with respect to the average is measured by this parameter; a homogeneous system
showsψ4 close to zero and a phase-separated system has a much bigger value. With this param-
eter, the isochoreφ = 0.40 was first studied for the system without a long-range barrier, in order
to see any effect gelation might have on liquid–gas separation (and, potentially, vice versa).

The inset to figure 3 shows the temporal evolution of ψ4 for different polymer fractions.
At low φp, the system is homogeneous, i.e., the attraction strength is too low to induce liquid–
gas separation, and for φp = 0.35, the system demixes, as shown by the increase of ψ4. At
even higher attraction strengths, the system does not phase separate into denser and more
dilute phases, as expected, but becomes again more homogeneous. The long-time limit
of the separation parameter, which is plotted in figure 3 as a function of φp, captures this
scenario. The liquid–gas transition is found to take place at φp = 0.30, in agreement with
previous simulations [34]. Theψ4 parameter does not increase monotonically, as expected from
equilibrium thermodynamics, but reaches a maximum and decreases. A plateau at ψ4 ≈ 0.08
is observed above φp = 0.60, indicating a quasi-homogeneous system. We may thus conclude
that some mechanism must be present that hinders liquid gas separation at high attraction
strength and finally prevents it. This mechanism is gelation, i.e., attraction-driven arrest.

3.3. Results for averaged quantities

To analyse the arrest mechanism, the long-range repulsive barrier was restored to the interaction
potential, thus forbidding liquid–gas separation and allowing the gelation to be probed in its own
right. With the barrier, the system is macroscopically homogeneous at all polymer fractions
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Figure 4. Density–density correlation functions for increasing polymer fraction, rescaled at long
times. From left to right φp = 0.425, 0.42, 0.415, 0.41, 0.40, 0.39 and 0.375, and Kohlrausch
fitting to the α-decay (dashed curve). Inset: unscaled correlation functions for the same states,
from right to left. The hard-sphere case, φp = 0 is added (left-hand curve).

studied, although it presents detectable voids and ‘tunnels’ when viewed from certain angles,
and also shows a low-angle peak in the structure factor at qa ∼ 1 [33]. However, this is always
lower than the primary near-neighbour peak at qa ∼ π .

The dynamics of the system close to gelation is studied by means of the self part of
the density–density correlation function, i.e. �s

q(t) = 〈exp{iq · [r j(t) − r j (0)]}〉, where
the brackets indicate averaging over particle j and time origin, and q is the wavevector.
Figure 4 shows the density correlator for increasing polymer fraction for qa = 6.9, the second
(nonmicrophase) peak in the structure factor. The two-step decay in the correlation functions is
similar to the behaviour of states approaching the glass transition in the Lennard-Jones system
(LJS) or in hard spheres (HS) [35, 36]. Furthermore, the decay from the plateau can be rescaled
at long times for all the states presented (with deviations for the state closest to the transition, as
seen also in other simulations [35, 36]) and the master decay can be fitted using the Kohlrausch
form,�s

q(t) = Aq exp(−(t/τK )
β), a signature of MCT-like nonergodicity transitions. Similar

scalings are obtained at all the wavevectors studied (not presented here).
Using the predictions from MCT, the early decay from the plateau is correctly described

by the von Schweidler law: �s
q(t) = f s

q − h(1)q (t/τ)b + h(2)q (t/τ)2b + O(t3b), where f s
q is

the nonergodicity parameter and h(1)q and h(2)q are amplitudes. All three of these are state
independent (specifically, independent of φp), whereas τ is a timescale which carries state-
dependent information, increasing as the glass transition is approached. The von Schweidler
expression correctly describes our correlation functions for all states and wavevectors, and the
results from the fittings show that f s

q in this attractive case is much bigger than the nonergodicity
parameters found in HS or LJS. This fact indicates that the localization length is much shorter
than in those cases, showing that the driving mechanism for this transition is the formation
of long-lived bonds between particles. Moreover, the von Schweidler exponent, b, from the
fittings also differs from the HS or LJS values, yielding b = 0.37 [33], in agreement with the
predictions from MCT [2].

For the timescales τq of the α decay, defined by �s
q(τq) = f s

q /e, MCT predicts a power-
law divergence, with an exponent γ related to b. Figure 5 presents the timescales at different
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wavevectors on logarithmic axes. The power-law divergence is very clear, and the exponents
agree with the value expected from b, which is γ = 3.1. The gel point, φG

p , also fitted in the
analysis, is found at φG

p = 0.4265 for this volume fraction, φ = 0.40. It is interesting to note
that the competition between gelation and liquid–gas separation at this polymer fraction was
already apparent in our study of the system without the long-range barrier, although gelation
fully impedes phase separation only well above this value of φp.

MCT also predicts a power-law decay, with the same exponent γ , for the self-diffusion
coefficient, D0. This coefficient is determined from the long-time behaviour of the mean
squared displacement, 〈δr2〉 = 6D0t . Fixing the gel point to the value reported above, the
fitted exponent in this case is γ = 1.23, quite different from the value obtained above for
the divergence of the timescale. Such differences are obtained in the analysis of other model
systems, LJS or HS, and have been attributed to the presence of dynamical heterogeneities
in the system. However, in our work the difference between the exponents determined from
the timescale and the diffusion coefficient is larger than in these other cases. This suggests a
possible stronger role for dynamic heterogeneities in the presence of short-range attractions.

3.4. Dynamical heterogeneity

The dynamical heterogeneities of a state can be studied by analysing the distribution of the
squared displacement of particles measured between some arbitrary time t = 0 and a later time
t = t∗. A homogeneous fluid should present a single-peaked distribution, its width depending
on t∗ and D0. Figure 6 presents this distribution for different states approaching the gel
transition, where t∗ has been chosen so that 〈δr2(t∗)〉 = 10a2 for all states. At low polymer
fractions, the system is indeed homogeneous and the distribution of squared displacements
agrees with the theoretical expectation for a system of Brownian particles. However, at higher
attraction strengths, the system becomes more and more heterogeneous and the distribution
more bimodal.

For polymer volume fractions above φp = 0.41 two peaks are clearly observed in the
distribution, showing one population of particles that move much less than a particle radius
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Figure 6. Distribution of squared displacement for φp = 0.30 (grey dotted curve), φp = 0.40
(grey dashed curve), φp = 0.41 (grey solid curve), φp = 0.415 (black dotted curve), φp = 0.42
(black dashed curve), and φp = 0.425 (black solid curve). In all cases 〈δr2〉 = 10a2. The thin
black curve is the theoretical distribution for a system of noninteracting Brownian particles. Inset:
number of slow particles (open circles) and fast particles (closed circles) in the system as a function
of the polymer volume fraction.

and another population of very mobile particles. (These of course combine such that the
average squared displacement is 〈δr2〉 = 10a2, since this was used to define t∗.) In fact, these
two populations of particles can be distinguished at all times. The exchange between them is
detectable, but very slow, allowing an analysis of the system to proceed as if it were composed
of two entirely distinct populations: ‘fast’ particles and ‘slow’ ones [37].

The nontrivial structure of the incipient gel (with voids and tunnels) makes possible the
existence of a subset of particles fully integrated into a percolating gel-like structure, each with
a large number of neighbours,while also allowing another subset of particles to be present at the
surface of the same structure and thus to have only a few neighbours. The slow particles form
a stiff structure which is very slow to relax, whereas the fast particles surround this structure,
with a high mobility. Since there is a relatively large amount of free space in the system, the
fast particles move freely and not in clusters or in stringlike motions. The fast particles attach
from time to time to the incipient gel structure at surface sites but generally depart again before
getting trapped. Preferential sites for this transient adsorption of fast particles are detected in
pockets of the incipient gel formed by the slow ones, where they can establish more bonds
with slow particles [37].

3.5. Implications for MCT

It is interesting to point out that the average behaviour of the system is correctly described
by MCT [33], both in the universal properties and the specific predictions for the attraction
driven glass transition. The main exceptions to this involve the non-Gaussian parameter
(not shown; see [37]) and the discrepancy between γ as measured from diffusion and from
structural relaxation. However, the detailed dynamics, involving two concurrent populations
of particles, signifies very strong dynamical heterogeneities which are not really consistent
with the approximation scheme lying behind MCT calculations. The strong DH observed
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in our incipient colloidal gels is related, it appears, to structural heterogeneities which have
no direct analogue in the glass transition driven by repulsion [10]. At lower densities, these
heterogeneities are even more important; in that region one expects to require significant
modifications to MCT, as developed and discussed in section 2.

4. MCT under shear

The framework of MCT can be extended to address the relationship between stress and strain-
rate in a system undergoing shear [9, 38, 39]; this includes a way to relate the yield stress
of an arrested phase to its static structure factor Sq as determined in an unstrained state. Via
Sq , the effects of attractive interactions on the nonlinear stress response can be incorporated.
The response is always shear thinning. A schematic extension of this approach, allowing for
a stress-dependent MCT vertex, admits the possibility of shear thickening states, which are
often observed experimentally in dense repulsive colloids [40]. Although we expect attractive
interactions also to have interesting effects on shear-thickening, we focus below on the shear-
thinning case.

The approach of [9, 38] predicts a finite yield stress σ + at the arrest transition. For gels
of attracting colloids, the scaling of σ + with the width of the attraction is found below by
combining a virial-type analysis of the AHSS model [41] with the model of ‘isotropically
sheared hard spheres’ (ISHSM) [38, 39]. (This model isotropizes advection in its effect on
density fluctuations.) The resulting scaling can be compared to the value σ + = 0.75kBT/a3

found at the glass transition of the ISHSM [39].
The ISHSM derives the nonlinear flow curves (namely, stress σ versus strain rate γ̇ )

from the competition between the slowing down of the structural dynamics captured in the
classical MCT, and the speeding up of fluctuations caused by shear advection. The latter
mechanism has been intensively studied in the context of fluctuations in sheared systems
close to criticality [42], and close to ordering or microphase transitions [43]. It causes a time
dependence of the wavevector of an arbitrary fluctuation

q(t) = (qx, qy + qx γ̇ t, qz), (1)

where the shear is along the x-direction with vx = γ̇ y; t here is the time since the start of
shearing (or the birth of a fluctuation). If a fluctuation initially has a wavelength ∼1/q , at a later
time t its wavelength ∼|q(t)|−1 = 1/q(t) will be smaller, leading to decay of the fluctuation
caused by fast, small-scale particle rearrangements.

The scaling of the yield stress σ + with the attraction range δ can, for small δ, be estimated
from a virial expansion of Sq for the AHSS: one finds 1− S−1

q → 6Aφδ sin(2qa)/(qa), where
A = exp ε − 1. Inserting this expression into the ISHSM [39], one can take the limit φ → 0
and A → ∞ with �v = 6φA2δ/π2 held fixed. This leads to the longitudinal memory kernel:

mq̃(t) → �v

2q̃2

∫ k̃>

d3k̃

(
q̃ · k̃

q̃k̃

)2

cos

(
k̃(t)− k̃

δ/2

)
�k̃(t)�|q̃−k̃|, (2)

while the corresponding expression for the steady state shear stress becomes

σ → γ̇
kBT

a3

φ�v

5δ2

∫ ∞

0
dt

∫ k̃>

0
dk̃ k̃2 cos

(
k̃(t)− k̃

δ/2

)
�2

k̃
(t). (3)

Here, the limit δ → 0 applies, and the rescaled wavectors q̃ = qaδ and a cut-off k̃> were
introduced; choosing k̃> ≈ 3.68 maps the AHSS virial results onto the corresponding results
of an attractive square-well system with range δ [41].
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In the approach of [38, 39], these equations are closed via an MCT-like relationship for the
normalized density correlation functions�q̃(t), whence we obtain predictions for the nonlinear
rheology close to the arrest transition (at�c

v = 1.42) of attracting colloids with small δ and low
φ. Although the low-φ approximation appears drastic, if shear is switched off in equation (2),
the results for the arrest line at small δ agree qualitatively with those of [2] up to fairly large
φ [12, 41]. (Thus the approximations made are faithful to the standard MCT analysis, though
they neglect the physics of heterogeneity discussed in section 2.) With shear present, we can
now analyse the altered behaviour of�q̃(t) at the onset of arrest and then compute the limiting
stress at low shear rate by inserting the resulting asymptotics into equation (3) [39]. This gives
a finite yield stress σ + just within the glass, which falls abruptly to zero on entering the fluid.

Asymptotically the�q̃(t) obey a ‘yielding scaling law’,�q̃(t) → �+
q̃(t̂) with t̂ = t/τ(γ̇ )

and τ (γ̇ ) a shear-rate dependent characteristic time. Also one finds the limiting closure
relation [39]:

�+
q̃(t̂) = m+

q̃(t̂)−
d

dt̂

∫ t̂

0
dt ′ m+

q̃(t̂ − t ′)�+
q̃(t̂), (4)

with m+
q̃(t̂) obtained from equation (2) using the limiting form�+

q̃(t̂). The yield stress σ + then

follows from inserting�+
q̃(t̂) into equation (3).

The expressions for the memory kernel and stress, equations (2) and (3), contain a rapidly
oscillating term cos(2(k̃(t)− k̃)/δ), which arises from interference of the particle density
fluctuations within the narrow region of attraction. Studying this factor illuminates the role
of shear. Without shear, constructive interference holds, and the factor is unity; the memory
kernels describe as usual bond-formation owing to attraction, and the correlator stays arrested
at its glass value, �+

q̃(t̂) = �+
q̃(0) = f c

q̃ . Under shear, the advection of wavevectors (giving

k̃(t) − k̃ = (kxky/k)γ̇ t + · · ·) produces rapid oscillations in this term when δ is small. The
interference is destroyed, causing a fast decay of the memory functions. The timescale τ (γ̇ )
needs to be found self-consistently from equations (2) and (4); the preceding argument shows
that it scales with shear-rate and attraction range as τ (γ̇ ) = caδ/|γ̇ | where ca is of order
unity. In contrast, for repulsive interactions in the ISHSM, we found [38, 39] τ (γ̇ ) = cr/|γ̇ |
with cr again of order unity. Integrating equation (3), one obtains (with further constants c′

a,r )
the scaling expressions σ +

AHSS = c′
a Gaδ and σ +

ISHSM = c′
r Gr for the yield stresses at the two

transitions. Here Ga,r are the corresponding shear moduli which, within MCT, are predicted to
acquire finite values on arrest. Their scalings have been discussed elsewhere [1, 2, 12, 41, 44];
for AHSS one has Ga ∼ kT a−3δ−2 whereas Gr � kT a−3 holds for hard spheres.

The final scaling result for AHSS is thus σ + � Gaδ � kT a−3δ−1. This dependence of
the yield stress on the attraction range leads to interesting scenarios in systems where both
attraction- and repulsion-driven arrest can be observed [7, 45], and where at high enough
concentrations the local structural dynamics should dominate the rheological behaviour.
Interpreting the ratio of yield stress to the elastic modulus as a yield strain uy = σ +/G, the
scaling dependence of σ + on δ can easily be understood. The yield strain of a (high-density)
colloidal gel is of order the relative range of the attraction δ: the solid is shear melted as soon
as particle bonds are broken. At the same time, the scaling of the modulus is quite different
for attractive and repulsive glasses; the attractive glass/gel is much stiffer as noted above.

Thus two states of equal viscosity, close to the attractive and the repulsive branches
of the arrest line, can have quite different relaxation times. It would be interesting to
measure the dynamics, in the region where the two branches meet, along contours of equal
zero-shear viscosity, as was done (without shear) for contours of equal diffusivity in recent
simulations [46]. Because the yield strain is much smaller for a bonded glass than for a caged
one, the nonlinear rheology should vary strongly along these contours.
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A simple ‘generalized nonlinear Maxwell model’ [39] summarizes the pertinent behaviour
for both AHSS and ISHSM cases:

η(γ̇ ) = η(∞) +

(
1

η(0)
+

|γ̇ |
σ ∗

)−1

. (5)

Here η(0) is the zero-shear viscosity; η(∞) is a (small) limiting viscosity at very high shear
rates (presumably set by hydrodynamic interactions, ignored here); and σ ∗ is a characteristic
stress scale of the order of the yield stress discontinuity σ + at the onset of arrest. The
above model gives near-plastic yield in arrested systems (η(0) = ∞) but can also describe a
highly viscous but shear-thinning fluid phase [39]. In such a phase, close to a repulsive glass
transition, the nonlinear viscosity η(γ̇ ) decreases significantly from its zero-shear value η(0)
once η(0)γ̇ a3/kT is of order unity. In a fluid close to an attraction-driven arrest, the decrease
is only at much higher shear rates, with η(0)γ̇ a3/kT ≈ 1/δ. This is associated with the much
larger value of the yield stress (σ + ∼ 1/δ), despite the much smaller value of the yield strain
(uy ∼ δ), in the nearby arrested phase.

5. Concluding remarks

We have described various developments in the application of MCT ideas to colloids with
short-range attractions. This theory is very successful at high densities in predicting re-
entrant transitions induced by such attractions [7], yet this re-entrance is caused by density
fluctuations whose presence partly undermines the assumptions of homogeneity on which
MCT is based. For a colloid volume fraction of φ = 0.4 we found by simulations that the
MCT predictions for averaged properties remain generally good despite a surprising degree
of dynamic heterogeneity. The latter is washed out in the averages, but can be probed more
closely through the distribution of mean-squared displacements, and this analysis reveals a
strong partitioning of particles into fast and slow populations. At much lower volume fractions
the assumption of homogeneity becomes clearly wrong, but this can be partially addressed,
at least at the level of qualitative prediction, by carefully combining MCT ideas with those
of phase separation (arrest of one phase in a phase-separated morphology) and/or irreversible
aggregation (applying MCT at the cluster scale). The effects of short-range attractions on the
rheology of colloidal suspensions are potentially quite subtle. The preliminary calculations
reported above already show some interesting trends, particularly for the range dependence
of the yield stress in the attraction-driven glass, and for the shear-thinning behaviour in the
nearby fluid phase.
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